Stamping (metalworking)

Contents

Stamping includes a variety of sheet-metal forming manufacturing processes, such as punching using a machine press or stamping press, blanking, embossing, bending, flanging, and coining.[1] This could be a single stage operation where every stroke of the press produce the desired form on the sheet metal part, or could occur through a series of stages. The process is usually carried out on sheet metal, but can also be used on other materials, such as polystyrene.

Operations

Simulation

Stamping simulation is a technology that calculates the process of sheet metal stamping, predicting common defects such as splits, wrinkles, springback and material thinning. Also known as forming simulation, the technology is a specific application of non-linear finite element analysis. The technology has many benefits in the manufacturing industry, especially the automotive industry, where lead time to market, cost and lean manufacturing are critical to the success of a company.

Recent research by the Aberdeen research company (October 2006) found that the most effective manufacturers spend more time simulating upfront and reap the rewards towards the end of their projects.[2]

Stamping simulation is used when a sheet metal part designer or toolmaker desires to assess the likelihood of successfully manufacturing a sheet metal part, without the expense of making a physical tool. Stamping simulation allows any sheet metal part forming process to be simulated in the virtual environment of a PC for a fraction of the expense of a physical tryout.

Results from a stamping simulation allow sheet metal part designers to assess alternative designs very quickly to optimize their part for low cost manufacture.

See also

References

  1. ^ Kalpakjian, Serope; Schmid, Steven (2001). Manufacturing Engineering and Technology (International edition. 4th ed.). Prentice Hall. ISBN 0-13-017440-8. 
  2. ^ "The Simulation-driven Design Benchmark Report: Getting It Right the First Time.". Aberdeen Group. 2006-10-31. http://www.aberdeen.com/summary/report/benchmark/BM_Simulation_driven_Design_3591.asp. Retrieved 2011-11-07.